lunes, 8 de diciembre de 2014

Rusia comienza a probar poderoso microprocesador

La firma rusa para el desarrollo de microprocesadores “MCST Elbrus”, ha iniciado la fase de pruebas de su nuevo microprocesador, el Elbrus-8S.

El Elbrus-8S es un microprocesador de 64 bits de propósito general. Contiene 8 núcleos «Elbrus» y corre a 1,3 GHz. Es un dispositivo fabricado con avanzada tecnología de 28 nm, de la firma taiwanesa TSMC. Su rendimiento es de ~250 GigaFLOPS, en precisión simple (32 bits).

El Elbrus-8S continúa la línea de microprocesadores con arquitectura “Elbrus”, desarrollada por el MCST Elbrus. Esta arquitectura es del tipo EPIC (Explicitly Parallel Instruction Computing): en cada ciclo de reloj, cada núcleo del nuevo procesador puede ejecutar hasta 23 operaciones, mientras que para los procesadores con arquitectura RISC este valor es varias veces menor. 

En base al microprocesador Elbrus-8S, está previsto lanzar la producción en masa de servidores, estaciones de trabajo y otros medios informáticos, para su uso en instituciones públicas y organizaciones empresariales con altas exigencias de seguridad de la información, así como para su uso en computación de altas prestaciones (como supercomputadoras), procesamiento de señales y telecomunicaciones.

Los microprocesadores Elbrus-8S están siendo probados en una computadora cuya placa madre tiene cuatro microprocesadores de este tipo. El sistema operativo (Elbrus OS) es una versión adaptada de Linux. Se espera que esta computadora tenga un rendimiento aproximado de 1 TeraFLOPS.

Por último, aunque no hay información oficial, el número de transistores del nuevo microprocesador ruso Elbrus-8S, sería de aproximadamente 2 mil millones. Esta cifra se deduce a partir del número de transistores que tiene el microprocesador anterior de cuatro núcleos, el Elbrus-4S, que es de 986 millones. ¿Tiene Rusia en la actualidad el microprocesador más poderoso del mundo?

Nueva computadora rusa conteniendo a
4 microprocesadores Elbrus-8S. 
(© MCST Elbrus)
buscadores: elbrus, Elbrus-8C, computer, supercomputers, processor, microprocessors, Russia, russian

sábado, 6 de diciembre de 2014

Estableciendo una red meteorológica en Marte

Autores: Alberto González Fairén, Javier Gómez Elvira y José Antonio Rodríguez Manfredi

El Centro de Astrobiología, en Madrid, está construyendo una red de laboratorios meteorológicos en Marte, enviados a bordo de diferentes misiones de NASA.

Cuando el rover Curiosity llegó a la superficie de Marte en el verano de 2012 y puso en funcionamiento su instrumental científico, un pequeño aparato de fabricación española comenzó igualmente a recoger datos. Era el instrumento REMS (iniciales de Rover Environmental Monitoring Station), encargado de reunir datos meteorológicos diarios y estacionales. Desde entonces, REMS ha suministrado ininterrumpidamente información acerca de la presión atmosférica, la humedad, la radiación ultravioleta, la temperatura del aire y del suelo, y los vientos en el cráter Gale. Por primera vez desde el programa Viking en los años 70, disponemos de datos meteorológicos continuos obtenidos desde la superficie de otro mundo. Y el desarrollo de los instrumentos que están haciendo posible esta investigación ha tenido lugar en España, gracias a la colaboración entre el Centro de Astrobiología (CAB, CSIC-INTA) y CRISA (grupo Airbus).

REMS está constituido por dos pequeños cilindros acoplados al mástil del rover (Figura 1), capaces de recoger información horizontal y vertical sobre la velocidad del viento, con el objetivo de caracterizar el flujo de aire cerca de la superficie marciana, desde brisas hasta pequeños remolinos o grandes tormentas de arena. El primer cilindro incorpora una serie de sensores de radiación infrarroja, que miden la intensidad de radiación en esta longitud de onda emitida desde el suelo de Marte, lo que permite estimar la temperatura de la superficie. El segundo cilindro apunta en la dirección de desplazamiento del rover, y mide la humedad atmosférica. Y los dos cilindros tienen sensores para medir la velocidad y temperatura del aire. Otro sensor situado en el interior del cuerpo de Curiosity, aunque expuesto a la atmósfera marciana, sirve para medir cambios en la presión atmosférica originados por el avance de frentes fríos o cálidos. Y finalmente, una serie de sensores situados en la plataforma del rover son sensibles a diferentes frecuencias de la luz solar, en el rango de la radiación ultravioleta. Los datos de REMS han confirmado que Marte es un planeta extraordinariamente frío y seco, bañado por radiación ultravioleta, y con notables variaciones circadianas y anuales en su presión atmosférica.

Figura 1: Los dos cilindros de REMS están situados
a metro y medio sobre el suelo y separados
por 120º  y 5 cm para evitar perturbaciones mutuas.
(© NASA/JPL-Caltech/INTA)

Los datos de REMS podrán ser comparados próximamente con los que recoja la segunda estación meteorológica española sobre Marte, TWINS (acrónimo de Temperature and Winds for InSight). InSight es una plataforma inmóvil de NASA que se posará sobre las planicies de Elysium en septiembre de 2016, con una misión nominal de aproximadamente dos años. TWINS (Figura 2), también desarrollado en el CAB, consiste igualmente en dos pequeños mástiles horizontales que recogerán información sobre la velocidad y dirección de los vientos, y la temperatura atmosférica. A pesar de que el lugar de amartizaje de InSight se encuentra próximo al cráter Gale, Elysium es una enorme llanura abierta a influencias ambientales regionales, mucho más expuesto que el interior del cráter Gale donde opera Curiosity. Por consiguiente, el análisis comparado de la información suministrada por REMS y TWINS podrá aportar nuevas perspectivas para comprender el clima actual de Marte, en general, y el exiguo ciclo hídrico entre el suelo y la atmósfera, en particular.

Figura 2: Representación artística de TWINS
montado en InSight. (© 
NASA)

Es posible que REMS y TWINS estén aún funcionando cuando llegue a Marte en 2020 la tercera estación meteorológica de fabricación española: MEDA (Mars Environmental Dynamics Analyzer, por sus siglas en inglés, Figura 3), también desarrollada en el CAB. En julio de 2014 NASA confirmó que MEDA viajará a bordo de su nuevo rover marciano, Mars2020. MEDA caracterizará los ciclos diurnos y estacionales del polvo ambiental, así como la presión atmosférica, las temperaturas del aire y del suelo, la humedad relativa, los vientos, y las radiaciones ultravioleta, visible e infrarroja. El lugar de aterrizaje de Mars2020 está aún debatiéndose; desde un punto de vista de la información meteorológica que suministrará MEDA, sería muy interesante que NASA eligiera un lugar lo más antipodal posible a Gale y Elysium (Figura 4). De esta forma, los datos regionales de REMS y TWINS podrían compararse a escala global con los de MEDA, para una mejor comprensión del clima marciano. El Centro de Astrobiología recogerá y estudiará los datos de REMS, TWINS y MEDA durante los próximos años, analizándolos en el contexto de la información recabada por el proyecto Viking hace 4 décadas, y configurando así el primer estudio meteorológico global y a largo plazo en otro mundo.

Figura 3: Esquema de MEDA. (© NASA)

Figura 4: Localización de los lugares de aterrizaje
de todos los rovers y landers sobre Marte.
El lugar de estudio de Mars2020 está aún por determinar.
(© NASA)

domingo, 9 de noviembre de 2014

Tectónica de placas (heladas) en Europa

Autor: Alberto González Fairén

Se han identificado indicios de un posible proceso de tectónica de placas en la luna de Júpiter Europa. De confirmarse, se trataría de la primera vez que se documenta este proceso en un cuerpo diferente a la Tierra.

La teoría de las placas tectónicas describe una corteza terrestre formada por al menos una docena de porciones diferenciadas, que son creadas en las cordilleras meso-oceánicas y destruidas en las fosas marinas vecinas a los continentes. Estas placas diferenciadas reposan sobre una capa de roca caliente y flexible, llamada Astenosfera, que fluye muy lentamente. El movimiento del material fundido de la Astenosfera fuerza a las placas superiores a moverse, hundirse o levantarse (Figura 1). De esta forma, se crea nueva corteza en los fondos marinos, se destruye corteza en las trincheras oceánicas, y se producen colisiones entre continentes que modifican el relieve: los continentes se unen entre sí o se fragmentan, los océanos se abren, y se levantan montañas.

Figura 1: Esquema del encuentro de placa oceánica
con placa continental en la Tierra.

El proceso de tectónica de placas sólo ha podido ser confirmado en la Tierra: aunque Mercurio, Venus y Marte presentan signos claros de actividad tectónica en sus superficies, no se ha podido demostrar de forma concluyente que ninguno de ellos haya tenido nunca un sistema de tectónica de placas. En octubre de este año, Simon Kattenhorn (Universidad de Idaho) y Louise Prockter (Universidad Johns Hopkins) publicaron los resultados de sus análisis morfológicos de la corteza de hielo Europa, que apuntan a un proceso de tectónica de placas en el satélite. Europa es uno de los cuatro grandes satélites de Júpiter, algo menor que nuestra Luna. Su estructura incluye un núcleo rocoso, un océano global que albergaría una cantidad de agua líquida varias veces superior a la de todos los océanos de la Tierra, y una corteza de hielo de agua (Figura 2). La superficie de Europa está surcada por fracturas y pliegues, y es conocido que algunos bloques de su superficie se han desplazado en el pasado (Figura 3).


Figura 2: Estructura interna de Europa.
(© NASA)

Figura 3: La superficie de Europa.
NASA/JPL/University of Arizona
)

Utilizando datos de la sonda Galileo, que estuvo en órbita de Júpiter de 1995 a 2003, Kattenhorn y Prockter encontraron claras evidencias visuales de procesos de expansión en la corteza de hielo de Europa. Su trabajo indica que muchas zonas de la superficie de Europa muestran evidencias de extensión, fundamentalmente en forma de gruesas bandas de material formado por hielo en la subsuperficie que asciende hasta la superficie a través de grandes fracturas en la corteza. Este proceso sería similar a la extensión de los fondos marinos en la Tierra. En nuestro planeta, a medida que nuevo material cortical es formado en las dorsales oceánicas, el material antiguo es destruido en las zonas de subducción, donde dos placas tectónicas convergen y una termina situada debajo de la otra.

Para realizar su trabajo, Kattenhorn y Prockter usaron la técnica habitual de intentar reconstruir la configuración inicial de los bloques de la superficie de Europa, para esbozar la configuración original de la superficie. Como resultado, encontraron que cerca de 20.000 kilómetros cuadrados de la superficie cercana al polo norte no se podían identificar. Este terreno perdido se habría movido bajo otra placa superficial, un escenario muy común en los límites tectónicos en la Tierra. De hecho, no aparecen cordilleras en la zona de subducción en Europa, lo que confirma que la placa fue forzada hacia el interior, en lugar de chocar y apilarse contra la placa superior. Además, los investigadores identificaron volcanes de hielo en la placa superior, posiblemente formados al fundirse el hielo de la placa inferior por la fricción generada en el proceso de subducción y ascender en forma de criolavas. La placa subducida habría quedado absorbida en la corteza de hielo de Europa, sin llegar a alcanzar el océano subsuperficial de Europa (Figura 4).

Figura 4: Reciclaje superficial en Europa.
(© NASA)

Un proceso de tectónica de placas en Europa ayudaría a explicar porqué su superficie es tan joven, menos de 90 millones de años según se estima por su tasa de craterización. Además, explicaría el proceso por el cual las masas de hielo de nueva creación encuentran su lugar en la corteza helada: Europa no aumenta de diámetro, y por lo tanto algún proceso de pérdida debe compensar la producción de nuevo material.

El proceso implicaría el movimiento de placas de hielo duras y frías, que reposarían sobre otra capa inferior de hielo menos frío y convectivo. El mecanismo por el cual este proceso de tectónica de placas pudo iniciarse, y las fuerzas que lo mantienen activo, están aún por definir. Posiblemente el calentamiento mareal debido al enorme campo gravitatorio de Júpiter tenga algo que ver, tanto en la dinámica cortical como en el mantenimiento del océano subsuperficial de Europa.

sábado, 4 de octubre de 2014

El agua de la Tierra es más vieja que el Sol

Autor: Alberto González Fairén

La mayoría del agua del Sistema Solar se originó antes de la formación del Sol.

Identificar el origen del agua sobre la Tierra es esencial para entender cómo se originan los entornos habitables y para predecir cómo de abundantes pueden ser en el Universo. En el Sistema Solar, el agua no se encuentra únicamente sobre la Tierra: también existe en cometas, meteoritos y lunas heladas, en algunos cráteres oscuros de Mercurio y tal vez incluso de nuestra Luna; y sabemos que fue mucho más abundante en el pasado en Marte y tal vez incluso en Venus (Figura 1).

Figura 1: Recreación artística de Marte con océanos.
(
© K. Gill, Web Odysseum)

Los cometas y los asteroides, al ser objetos primitivos que apenas han experimentado cambios desde el origen del Sistema Solar, proporcionan datos muy valiosos acerca de las condiciones ambientales de nuestro sistema planetario en su origen. Entre otras cosas, pueden aportar información acerca del origen del agua en el Sistema Solar, una cuestión que no ha encontrado aún una explicación definitiva. En su juventud, el Sol estaba rodeado por un disco de polvo y fragmentos rocosos, el disco protoplanetario, a partir del cual se originaron los planetas (Figura 2). Este disco protoplanetario era muy rico en agua, en forma de hielos. Al formarse la estrella y comenzar a irradiar, calentó la nube a su alrededor y la inundó de radiación, vaporizando los hielos y rompiendo las moléculas de agua en hidrógeno y oxígeno. Pero nunca ha estado totalmente claro si la mayoría de los hielos que estaban ya presentes en la propia nube molecular interestelar que dio origen al Sol permanecieron inalterados; o si, por el contrario, este agua fue masivamente destruida en la génesis del Sistema Solar y vuelta a formar por medio de reacciones químicas habituales en el disco protoplanetario.

Figura 2: Sistema Solar en formación.
(© LeviathanAstronomy.com)

En septiembre de este año, un equipo anglo-americano dirigido por Ilsedore Cleeves, de la Universidad de Michigan, publicó los resultados de sus investigaciones que apuntan a que la mayoría del agua del Sistema Solar se originó en forma de hielos en el espacio interestelar antes de la formación del Sol. El agua del Sistema Solar muestra un enriquecimiento en deuterio como resultado de procesos químicos producidos a bajas temperaturas. El equipo de Cleeves implementó modelos capaces de reconstruir las condiciones del disco de gas y polvo que formó el Sistema Solar.

Simularon un disco protoplanetario en el que todo el deuterio proveniente del espacio interestelar había sido eliminado por procesos químicos, y el sistema debía por tanto empezar de cero a producir hielos enriquecidos en deuterio, durante un periodo de simulación de un millón de años. Calcularon la cantidad de radiación que habría afectado al Sistema Solar en formación, tanto la proveniente del Sol joven como desde el espacio interestelar, y cómo esa radiación habría viajado a través de la nube protoplanetaria. Estas condiciones determinan cómo se forman nuevas moléculas de agua a partir de hidrógeno y oxígeno, y en particular la probabilidad de que estas moléculas incluyan deuterio. El objetivo era comprobar si el sistema simulado podría alcanzar proporciones deuterio/hidrógeno similares a las observadas en meteoritos, cometas y en el agua de los océanos de la Tierra.
 
Sus resultados demostraron que no: la abundancia de agua con deuterio era inferior a la que tiene el Sistema Solar hoy, lo que implica que una gran proporción del agua del Sistema Solar (hasta el 50% del agua de la Tierra y hasta el 100% del agua de los cometas) debe provenir de hielos interestelares originados antes de la formación del Sol, hace 4.600 millones de años. La confirmación o refutación de este modelo teórico se podrá obtener a partir del año que viene, cuando el nuevo radiotelescopio que está en construcción en el desierto de Atacama (Chile) empiece a estudiar los procesos químicos que suceden en los discos protoplanetarios (Figura 3).

Figura 3: Perspectiva del Atacama Large Millimeter Array (ALMA).
(© Bacri-Normier/ESO)

¿Por qué es importante saber si los hielos del Sistema Solar son más antiguos que el Sol o no? En palabras de Cleeves, “si el agua del Sistema Solar ha sido heredada del espacio interestelar, entonces es muy probable que hielos similares, junto con la materia orgánica prebiótica que contuvieran, sean abundantes en muchos de los discos protoplanetarios que observamos alrededor de otras estrellas (Figura 4). Pero si el agua del Sistema Solar se formó a partir de procesos químicos locales durante el nacimiento del Sol, entonces es posible que la abundancia de agua varíe considerablemente entre unos sistemas planetarios y otros, y que los procesos de formación del agua del Sistema Solar hayan sido específicos para esta región del Universo, lo que obviamente tendría implicaciones para el potencial del origen de la vida en otros lugares”. Por lo tanto, sus resultados indican que los hielos interestelares con un contenido abundante de moléculas orgánicas deben ser un ingrediente abundante en el espacio entre las estrellas.

Figura 4: Estrellas en la Nebulosa de Orión con discos
protoplanetarios, vistos por el telescopio espacial Hubble.
(© NASA)

martes, 23 de septiembre de 2014

Related Posts Plugin for WordPress, Blogger...