sábado, 4 de octubre de 2014

El agua de la Tierra es más vieja que el Sol

Autor: Alberto González Fairén

La mayoría del agua del Sistema Solar se originó antes de la formación del Sol.

Identificar el origen del agua sobre la Tierra es esencial para entender cómo se originan los entornos habitables y para predecir cómo de abundantes pueden ser en el Universo. En el Sistema Solar, el agua no se encuentra únicamente sobre la Tierra: también existe en cometas, meteoritos y lunas heladas, en algunos cráteres oscuros de Mercurio y tal vez incluso de nuestra Luna; y sabemos que fue mucho más abundante en el pasado en Marte y tal vez incluso en Venus (Figura 1).

Figura 1: Recreación artística de Marte con océanos.
(
© K. Gill, Web Odysseum)

Los cometas y los asteroides, al ser objetos primitivos que apenas han experimentado cambios desde el origen del Sistema Solar, proporcionan datos muy valiosos acerca de las condiciones ambientales de nuestro sistema planetario en su origen. Entre otras cosas, pueden aportar información acerca del origen del agua en el Sistema Solar, una cuestión que no ha encontrado aún una explicación definitiva. En su juventud, el Sol estaba rodeado por un disco de polvo y fragmentos rocosos, el disco protoplanetario, a partir del cual se originaron los planetas (Figura 2). Este disco protoplanetario era muy rico en agua, en forma de hielos. Al formarse la estrella y comenzar a irradiar, calentó la nube a su alrededor y la inundó de radiación, vaporizando los hielos y rompiendo las moléculas de agua en hidrógeno y oxígeno. Pero nunca ha estado totalmente claro si la mayoría de los hielos que estaban ya presentes en la propia nube molecular interestelar que dio origen al Sol permanecieron inalterados; o si, por el contrario, este agua fue masivamente destruida en la génesis del Sistema Solar y vuelta a formar por medio de reacciones químicas habituales en el disco protoplanetario.

Figura 2: Sistema Solar en formación.
(© LeviathanAstronomy.com)

En septiembre de este año, un equipo anglo-americano dirigido por Ilsedore Cleeves, de la Universidad de Michigan, publicó los resultados de sus investigaciones que apuntan a que la mayoría del agua del Sistema Solar se originó en forma de hielos en el espacio interestelar antes de la formación del Sol. El agua del Sistema Solar muestra un enriquecimiento en deuterio como resultado de procesos químicos producidos a bajas temperaturas. El equipo de Cleeves implementó modelos capaces de reconstruir las condiciones del disco de gas y polvo que formó el Sistema Solar.

Simularon un disco protoplanetario en el que todo el deuterio proveniente del espacio interestelar había sido eliminado por procesos químicos, y el sistema debía por tanto empezar de cero a producir hielos enriquecidos en deuterio, durante un periodo de simulación de un millón de años. Calcularon la cantidad de radiación que habría afectado al Sistema Solar en formación, tanto la proveniente del Sol joven como desde el espacio interestelar, y cómo esa radiación habría viajado a través de la nube protoplanetaria. Estas condiciones determinan cómo se forman nuevas moléculas de agua a partir de hidrógeno y oxígeno, y en particular la probabilidad de que estas moléculas incluyan deuterio. El objetivo era comprobar si el sistema simulado podría alcanzar proporciones deuterio/hidrógeno similares a las observadas en meteoritos, cometas y en el agua de los océanos de la Tierra.
 
Sus resultados demostraron que no: la abundancia de agua con deuterio era inferior a la que tiene el Sistema Solar hoy, lo que implica que una gran proporción del agua del Sistema Solar (hasta el 50% del agua de la Tierra y hasta el 100% del agua de los cometas) debe provenir de hielos interestelares originados antes de la formación del Sol, hace 4.600 millones de años. La confirmación o refutación de este modelo teórico se podrá obtener a partir del año que viene, cuando el nuevo radiotelescopio que está en construcción en el desierto de Atacama (Chile) empiece a estudiar los procesos químicos que suceden en los discos protoplanetarios (Figura 3).

Figura 3: Perspectiva del Atacama Large Millimeter Array (ALMA).
(© Bacri-Normier/ESO)

¿Por qué es importante saber si los hielos del Sistema Solar son más antiguos que el Sol o no? En palabras de Cleeves, “si el agua del Sistema Solar ha sido heredada del espacio interestelar, entonces es muy probable que hielos similares, junto con la materia orgánica prebiótica que contuvieran, sean abundantes en muchos de los discos protoplanetarios que observamos alrededor de otras estrellas (Figura 4). Pero si el agua del Sistema Solar se formó a partir de procesos químicos locales durante el nacimiento del Sol, entonces es posible que la abundancia de agua varíe considerablemente entre unos sistemas planetarios y otros, y que los procesos de formación del agua del Sistema Solar hayan sido específicos para esta región del Universo, lo que obviamente tendría implicaciones para el potencial del origen de la vida en otros lugares”. Por lo tanto, sus resultados indican que los hielos interestelares con un contenido abundante de moléculas orgánicas deben ser un ingrediente abundante en el espacio entre las estrellas.

Figura 4: Estrellas en la Nebulosa de Orión con discos
protoplanetarios, vistos por el telescopio espacial Hubble.
(© NASA)

martes, 23 de septiembre de 2014

lunes, 8 de septiembre de 2014

Actualización biografía Alberto González Fairén

Alberto González Fairén trabaja en el Departamento de Planetología y Habitabilidad del Centro de Astrobiología, en Madrid, España. Previamente fue investigador durante 2 años en el Departamento de Astronomía de la Universidad Cornell, en Nueva York; y durante 6 años en la División de Ciencias del Espacio y Astrobiología del Centro de Investigación Ames de la NASA, y en el Instituto SETI, ambos en San Francisco, California. Es Doctor en Biología por la Universidad Autónoma de Madrid (2006). Ha publicado 60 artículos de investigación, más de 150 artículos de divulgación, 3 libros, y ha presentado cerca de 100 trabajos de investigación en congresos en Europa y EEUU. Ha participado en expediciones científicas en España, Chile, Estados Unidos, Canadá y el Ártico. En 2012 fue galardonado con el Premio Urey a la excelencia investigadora en Ciencias Planetarias, otorgado por la Sociedad Astronómica Americana. Es miembro del IAG Planetary Geomorphology committee, perteneciente a la International Association of Geomorphologists; miembro del Habitability of Exoplanets Research Group, de la Washington State University; Editor Asociado de la revista Mars, The Internacional Journal of Mars Science and Exploration; y miembro del Consejo de Redacción de la revista Astronomía (España).

Alberto González Fairén
(© Cornell University
)

domingo, 7 de septiembre de 2014

Los barrancos de Marte: ¿formados por el flujo de agua o de CO2?

Autor: Alberto González Fairén

Los orbitadores que investigan la superficie de Marte han observado cambios geomorfológicos a pequeña escala, que podrían atribuirse al flujo de agua líquida.

En el año 2000, imágenes captadas por la sonda Mars Global Surveyor mostraron la presencia de estructuras en forma de barrancos de escala kilométrica, y que consisten en una cabecera que alimenta un canal, y que a su vez termina en un abanico deposicional (Figura 1). Se localizan en latitudes medias y altas, sobre todo en el hemisferio sur (las tierras altas de Marte). Su orientación es compleja. En el hemisferio sur, los que se encuentran a bajas latitudes están orientados hacia el polo sur, mientras que a latitudes superiores su orientación parece más aleatoria. En el hemisferio norte, por el contrario, tienden a orientarse hacia el ecuador. Son muy recientes, según se puede inferir de su excelente estado de conservación y del hecho de que carecen de dunas o cráteres de impacto superpuestos. Los barrancos del hemisferio norte están más degradados que los del sur, y en general los de las zonas polares se encuentran mejor preservados.

Figura 1: Barrancos en Marte. El primero por la izquierda
mide 150 metros de ancho
(© Parsons and Nimmo, 2010)

Estas estructuras fueron descritas inicialmente como prueba del flujo de agua líquida sobre la superficie de Marte en tiempos recientes, así como de la existencia de acuíferos a escasa profundidad. Sin embargo, la presencia y estabilidad del agua líquida sobre la superficie de Marte es un problema aún sin resolver. Algunos investigadores apuntaron la posibilidad de que cambios en la oblicuidad de la órbita de Marte en tiempos recientes hubieran proporcionado las condiciones necesarias para la fusión de hielo de agua subsuperficial y la excavación de los barrancos. En 2006 se observaron incluso cambios en algunos de los barrancos al comparar fotografías de los mismos lugares tomadas en 1999 y 2006 (Figura 2).

Figura 2: Formación reciente de un depósito
en Centauri Montes
(© MSSS/NASA)

El equipo de Colin Dundas, del Servicio Geológico de Estados Unidos, demostró en 2012 que los cambios observados en los barrancos están asociados de forma estacional con los ciclos de deshielo del CO2 congelado: analizando imágenes de alta resolución proporcionadas por la sonda Mars Reconnaissance Orbiter, descubrieron que la morfología de los barrancos cambia siempre como resultado del flujo de líquidos durante los inviernos. La fusión estacional del hielo de CO2 parece ser la única explicación posible a este fenómeno, ya que las bajísimas temperaturas de los inviernos marcianos imposibilitan el flujo de agua líquida, y el hielo de CO2 es muy común en la superficie de Marte. Este año han publicado un estudio aún más completo: después de examinar 356 barrancos en Marte, han conseguido registrar actividad posterior a 2006 en 38 de ellos. 

Sin embargo, en algunas laderas marcianas, se forman marcas lineales oscuras cuando la temperatura aumenta (Figura 3). El grupo de Lujendra Ojha, de Georgia Tech, localizó a principios de este año 13 regiones marcianas donde se forman estas líneas. Aunque no han encontrado evidencia de que las líneas oscuras estén relacionadas con la presencia de agua o de sales, sí han demostrado que aparecen preferentemente en zonas ricas en minerales con un alto contenido en hierro. La presencia de óxidos de hierro en estos minerales sugiere su interacción con agua líquida, posiblemente mezclada con sales. Por lo tanto, podrían existir flujos de agua líquida sobre la superficie de Marte hoy en día, que tal vez estarían jugando también un papel en la formación de los barrancos.

Figura 3: Líneas oscuras en Arabia Terra.
(© NASA)

Además, el equipo de Stephen Grasby, del Servicio Geológico de Canadá, publicó en septiembre de este año los resultados de sus investigaciones en algunos barrancos similares a los marcianos localizados en el Ártico (Figura 4). En el manantial situado más al norte de todos los conocidos en la Tierra, el agua fluye por la superficie en cantidades de hasta 520 litros por segundo y a una temperatura de hasta 9ºC, en un entorno definido por temperaturas medias anuales de -20ºC y precipitaciones de sólo 75 mm por año. Además, la región está dominada por una capa densa de permafrost de más de 400 metros. En este entorno análogo a Marte, el agua líquida puede fluir sobre la superficie y excavar barrancos gracias a un potente sistema de circulación subterránea de agua, que conecta la criosfera con la subsuperficie sin necesidad de invocar anomalías térmicas. ¿Podría estar sucediendo algo similar en Marte hoy en día?

Figura 4: Comparación de barrancos en la Tierra (izquierda)
y Marte
(© Grasby et al., 2014/NASA/JPL-Caltech/MSSS)

sábado, 6 de septiembre de 2014

Proyecto para la construcción de un banco de pruebas simplificado de motores cohete en Pipinas (Punta Indio, Buenos Aires)

(© CONAE)

(© CONAE)

(© CONAE)

(© CONAE)

Zona de lanzamiento de los vectores VEx, y futuro
emplazamiento del banco de pruebas de
motores de 30 tn de empuje en Pipinas.
(© Bing Mapas)
Related Posts Plugin for WordPress, Blogger...